Impressum und Datenschutzerklaerung

Calculation of 0x05

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x5 =  00000101 = x^2 + 1
m(x) = (x^6 + x^4 + x) * a(x) + (1)

Calculation of 0x05-1 in the finite field GF(28)

00000001 = 00000001 * 100011011 + 01010010 * 101
00000000 = 00000101 * 100011011 + 100011011 * 101

a-1(x) = x^6 + x^4 + x = 01010010 = 0x52

The calculation of 0x05-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     1
1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 0 0 0
1 1 1 1 0 0 0 1 0 0 1
SBOX(05) = 1 1 1 1 1 0 0 0 * 1 + 0 = 0
0 1 1 1 1 1 0 0 0 1 1
0 0 1 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 0 0 0


SBOX(05) = 01101011 = 6b

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com