Impressum und Datenschutzerklaerung

Calculation of 0x17

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x17 =  00010111 = x^4 + x^2 + x + 1
m(x) = (x^4 + x^2 + x + 1) * a(x) + (x^3 + x^2 + x)

Calculation of 0x17-1 in the finite field GF(28)

00001110 = 00000001 * 100011011 + 00010111 * 10111
00000101 = 00000011 * 100011011 + 00111000 * 10111
00000001 = 00000100 * 100011011 + 01011111 * 10111
00000000 = 00010111 * 100011011 + 100011011 * 10111

a-1(x) = x^6 + x^4 + x^3 + x^2 + x + 1 = 01011111 = 0x5f

The calculation of 0x17-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      1     1     0
1 1 0 0 0 1 1 1 1 1 0
1 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1 1 0 0
SBOX(17) = 1 1 1 1 1 0 0 0 * 1 + 0 = 1
0 1 1 1 1 1 0 0 0 1 1
0 0 1 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 0 0 1


SBOX(17) = 11110000 = f0

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com