Impressum und Datenschutzerklaerung

Calculation of 0x20

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x20 =  00100000 = x^5
m(x) = (x^3) * a(x) + (x^4 + x^3 + x + 1)

Calculation of 0x20-1 in the finite field GF(28)

00011011 = 00000001 * 100011011 + 00001000 * 100000
00001101 = 00000011 * 100011011 + 00011001 * 100000
00000001 = 00000111 * 100011011 + 00111010 * 100000
00000000 = 00100000 * 100011011 + 100011011 * 100000

a-1(x) = x^5 + x^4 + x^3 + x = 00111010 = 0x3a

The calculation of 0x20-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     1
1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 0 0 1
1 1 1 1 0 0 0 1 1 0 0
SBOX(20) = 1 1 1 1 1 0 0 0 * 1 + 0 = 1
0 1 1 1 1 1 0 0 1 1 1
0 0 1 1 1 1 1 0 0 1 0
0 0 0 1 1 1 1 1 0 0 1


SBOX(20) = 10110111 = b7

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com