Impressum und Datenschutzerklaerung

Calculation of 0x37

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x37 =  00110111 = x^5 + x^4 + x^2 + x + 1
m(x) = (x^3 + x^2 + x) * a(x) + (x^4 + 1)

Calculation of 0x37-1 in the finite field GF(28)

00010001 = 00000001 * 100011011 + 00001110 * 110111
00000100 = 00000011 * 100011011 + 00010011 * 110111
00000001 = 00001101 * 100011011 + 01000010 * 110111
00000000 = 00110111 * 100011011 + 100011011 * 110111

a-1(x) = x^6 + x = 01000010 = 0x42

The calculation of 0x37-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     0
1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 0 0 0
1 1 1 1 0 0 0 1 0 0 1
SBOX(37) = 1 1 1 1 1 0 0 0 * 0 + 0 = 1
0 1 1 1 1 1 0 0 0 1 0
0 0 1 1 1 1 1 0 1 1 0
0 0 0 1 1 1 1 1 0 0 1


SBOX(37) = 10011010 = 9a

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com