Impressum und Datenschutzerklaerung

Calculation of 0x44

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x44 =  01000100 = x^6 + x^2
m(x) = (x^2) * a(x) + (x^3 + x + 1)

Calculation of 0x44-1 in the finite field GF(28)

00001011 = 00000001 * 100011011 + 00000100 * 1000100
00000001 = 00001011 * 100011011 + 00101101 * 1000100
00000000 = 01000100 * 100011011 + 100011011 * 1000100

a-1(x) = x^5 + x^3 + x^2 + 1 = 00101101 = 0x2d

The calculation of 0x44-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      1     1     1
1 1 0 0 0 1 1 1 0 1 1
1 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1 1 0 1
SBOX(44) = 1 1 1 1 1 0 0 0 * 0 + 0 = 1
0 1 1 1 1 1 0 0 1 1 0
0 0 1 1 1 1 1 0 0 1 0
0 0 0 1 1 1 1 1 0 0 0


SBOX(44) = 00011011 = 1b

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com