Impressum und Datenschutzerklaerung

Calculation of 0x52

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x52 =  01010010 = x^6 + x^4 + x
m(x) = (x^2 + 1) * a(x) + (1)

Calculation of 0x52-1 in the finite field GF(28)

00000001 = 00000001 * 100011011 + 00000101 * 1010010
00000000 = 01010010 * 100011011 + 100011011 * 1010010

a-1(x) = x^2 + 1 = 00000101 = 0x05

The calculation of 0x52-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      1     1     0
1 1 0 0 0 1 1 1 0 1 0
1 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1 0 0 0
SBOX(52) = 1 1 1 1 1 0 0 0 * 0 + 0 = 0
0 1 1 1 1 1 0 0 0 1 0
0 0 1 1 1 1 1 0 0 1 0
0 0 0 1 1 1 1 1 0 0 0


SBOX(52) = 00000000 = 0

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com