Impressum und Datenschutzerklaerung

Calculation of 0x54

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x54 =  01010100 = x^6 + x^4 + x^2
m(x) = (x^2 + 1) * a(x) + (x^4 + x^3 + x^2 + x + 1)

Calculation of 0x54-1 in the finite field GF(28)

00011111 = 00000001 * 100011011 + 00000101 * 1010100
00001001 = 00000111 * 100011011 + 00011010 * 1010100
00000100 = 00001000 * 100011011 + 00101011 * 1010100
00000001 = 00010111 * 100011011 + 01001100 * 1010100
00000000 = 01010100 * 100011011 + 100011011 * 1010100

a-1(x) = x^6 + x^3 + x^2 = 01001100 = 0x4c

The calculation of 0x54-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     0
1 1 0 0 0 1 1 1 0 1 0
1 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1 1 0 0
SBOX(54) = 1 1 1 1 1 0 0 0 * 0 + 0 = 0
0 1 1 1 1 1 0 0 0 1 1
0 0 1 1 1 1 1 0 1 1 0
0 0 0 1 1 1 1 1 0 0 0


SBOX(54) = 00100000 = 20

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com