Impressum und Datenschutzerklaerung

Calculation of 0x55

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x55 =  01010101 = x^6 + x^4 + x^2 + 1
m(x) = (x^2 + 1) * a(x) + (x^4 + x^3 + x)

Calculation of 0x55-1 in the finite field GF(28)

00011010 = 00000001 * 100011011 + 00000101 * 1010101
00001001 = 00000110 * 100011011 + 00011111 * 1010101
00000001 = 00001011 * 100011011 + 00100100 * 1010101
00000000 = 01010101 * 100011011 + 100011011 * 1010101

a-1(x) = x^5 + x^2 = 00100100 = 0x24

The calculation of 0x55-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     0
1 1 0 0 0 1 1 1 0 1 0
1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 1 0 0 1
SBOX(55) = 1 1 1 1 1 0 0 0 * 0 + 0 = 1
0 1 1 1 1 1 0 0 1 1 1
0 0 1 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 1 0 0 1


SBOX(55) = 11111100 = fc

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com