Impressum und Datenschutzerklaerung

Calculation of 0x65

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x65 =  01100101 = x^6 + x^5 + x^2 + 1
m(x) = (x^2 + x + 1) * a(x) + (x^5)

Calculation of 0x65-1 in the finite field GF(28)

00100000 = 00000001 * 100011011 + 00000111 * 1100101
00000101 = 00000011 * 100011011 + 00001000 * 1100101
00000010 = 00011111 * 100011011 + 01010111 * 1100101
00000001 = 00111101 * 100011011 + 10100110 * 1100101
00000000 = 01100101 * 100011011 + 100011011 * 1100101

a-1(x) = x^7 + x^5 + x^2 + x = 10100110 = 0xa6

The calculation of 0x65-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     1
1 1 0 0 0 1 1 1 1 1 0
1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 1 0 0 1
SBOX(65) = 1 1 1 1 1 0 0 0 * 0 + 0 = 0
0 1 1 1 1 1 0 0 1 1 0
0 0 1 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 1 1 0 0


SBOX(65) = 01001101 = 4d

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com