Calculation of 0x66
m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x66 = 01100110 = x^6 + x^5 + x^2 + x
m(x) = (x^2 + x + 1) * a(x) + (x^5 + x^3 + 1)
Calculation of 0x66-1 in the finite field GF(28)00101001 = 00000001 * 100011011 + 00000111 * 1100110
00011101 = 00000011 * 100011011 + 00001000 * 1100110
00001110 = 00000100 * 100011011 + 00011111 * 1100110
00000001 = 00001011 * 100011011 +
00110110 * 1100110
00000000 = 01100110 * 100011011 + 100011011 * 1100110
a
-1(x) = x^5 + x^4 + x^2 + x = 00110110 = 0x36
The calculation of 0x66
-1 is made with the
Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.
Affine transformation over GF(2) 1 0 0 0 1 1 1 1 0 1 1
1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1 0 0 0
SBOX(66) = 1 1 1 1 1 0 0 0 * 1 + 0 = 1
0 1 1 1 1 1 0 0 1 1 1
0 0 1 1 1 1 1 0 0 1 0
0 0 0 1 1 1 1 1 0 0 0
SBOX(66) = 00110011 = 33
For more information see
FIPS 197.
Implemented by bachph [at] philba [dot] com