Impressum und Datenschutzerklaerung

Calculation of 0x76

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x76 =  01110110 = x^6 + x^5 + x^4 + x^2 + x
m(x) = (x^2 + x) * a(x) + (x^5 + x^3 + x^2 + x + 1)

Calculation of 0x76-1 in the finite field GF(28)

00101111 = 00000001 * 100011011 + 00000110 * 1110110
00000111 = 00000011 * 100011011 + 00001011 * 1110110
00000010 = 00010000 * 100011011 + 01101111 * 1110110
00000001 = 00110011 * 100011011 + 10111010 * 1110110
00000000 = 01110110 * 100011011 + 100011011 * 1110110

a-1(x) = x^7 + x^5 + x^4 + x^3 + x = 10111010 = 0xba

The calculation of 0x76-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     0
1 1 0 0 0 1 1 1 1 1 0
1 1 1 0 0 0 1 1 0 0 0
1 1 1 1 0 0 0 1 1 0 1
SBOX(76) = 1 1 1 1 1 0 0 0 * 1 + 0 = 1
0 1 1 1 1 1 0 0 1 1 1
0 0 1 1 1 1 1 0 0 1 0
0 0 0 1 1 1 1 1 1 0 0


SBOX(76) = 00111000 = 38

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com