Impressum und Datenschutzerklaerung

Calculation of 0x85

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x85 =  10000101 = x^7 + x^2 + 1
m(x) = (x) * a(x) + (x^4 + 1)

Calculation of 0x85-1 in the finite field GF(28)

00010001 = 00000001 * 100011011 + 00000010 * 10000101
00001101 = 00001000 * 100011011 + 00010001 * 10000101
00000110 = 00011001 * 100011011 + 00110001 * 10000101
00000001 = 00111010 * 100011011 + 01110011 * 10000101
00000000 = 10000101 * 100011011 + 100011011 * 10000101

a-1(x) = x^6 + x^5 + x^4 + x + 1 = 01110011 = 0x73

The calculation of 0x85-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      1     1     1
1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 0 0 1
1 1 1 1 0 0 0 1 0 0 0
SBOX(85) = 1 1 1 1 1 0 0 0 * 1 + 0 = 1
0 1 1 1 1 1 0 0 1 1 0
0 0 1 1 1 1 1 0 1 1 0
0 0 0 1 1 1 1 1 0 0 1


SBOX(85) = 10010111 = 97

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com