Impressum und Datenschutzerklaerung

Calculation of 0x86

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x86 =  10000110 = x^7 + x^2 + x
m(x) = (x) * a(x) + (x^4 + x^2 + x + 1)

Calculation of 0x86-1 in the finite field GF(28)

00010111 = 00000001 * 100011011 + 00000010 * 10000110
00000111 = 00001011 * 100011011 + 00010111 * 10000110
00000010 = 00110000 * 100011011 + 01100111 * 10000110
00000001 = 01011011 * 100011011 + 10111110 * 10000110
00000000 = 10000110 * 100011011 + 100011011 * 10000110

a-1(x) = x^7 + x^5 + x^4 + x^3 + x^2 + x = 10111110 = 0xbe

The calculation of 0x86-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     0
1 1 0 0 0 1 1 1 1 1 0
1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 1 1 0 0
SBOX(86) = 1 1 1 1 1 0 0 0 * 1 + 0 = 0
0 1 1 1 1 1 0 0 1 1 0
0 0 1 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 1 1 0 0


SBOX(86) = 01000100 = 44

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com