Impressum und Datenschutzerklaerung

Calculation of 0x87

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0x87 =  10000111 = x^7 + x^2 + x + 1
m(x) = (x) * a(x) + (x^4 + x^2 + 1)

Calculation of 0x87-1 in the finite field GF(28)

00010101 = 00000001 * 100011011 + 00000010 * 10000111
00000101 = 00001010 * 100011011 + 00010101 * 10000111
00000001 = 00101001 * 100011011 + 01010110 * 10000111
00000000 = 10000111 * 100011011 + 100011011 * 10000111

a-1(x) = x^6 + x^4 + x^2 + x = 01010110 = 0x56

The calculation of 0x87-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     1
1 1 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 1 0 0 0
SBOX(87) = 1 1 1 1 1 0 0 0 * 1 + 0 = 1
0 1 1 1 1 1 0 0 0 1 0
0 0 1 1 1 1 1 0 1 1 0
0 0 0 1 1 1 1 1 0 0 0


SBOX(87) = 00010111 = 17

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com