Impressum und Datenschutzerklaerung

Calculation of 0xb3

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0xb3 =  10110011 = x^7 + x^5 + x^4 + x + 1
m(x) = (x) * a(x) + (x^6 + x^5 + x^4 + x^3 + x^2 + 1)

Calculation of 0xb3-1 in the finite field GF(28)

01111101 = 00000001 * 100011011 + 00000010 * 10110011
00110100 = 00000011 * 100011011 + 00000111 * 10110011
00010101 = 00000111 * 100011011 + 00001100 * 10110011
00001011 = 00001010 * 100011011 + 00010011 * 10110011
00000011 = 00010011 * 100011011 + 00101010 * 10110011
00000001 = 01100000 * 100011011 + 11101111 * 10110011
00000000 = 10110011 * 100011011 + 100011011 * 10110011

a-1(x) = x^7 + x^6 + x^5 + x^3 + x^2 + x + 1 = 11101111 = 0xef

The calculation of 0xb3-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      1     1     1
1 1 0 0 0 1 1 1 1 1 0
1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 1 1 0 1
SBOX(b3) = 1 1 1 1 1 0 0 0 * 0 + 0 = 0
0 1 1 1 1 1 0 0 1 1 1
0 0 1 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0


SBOX(b3) = 01101101 = 6d

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com