Calculation of 0xbe
m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) =   0xbe =  10111110 = x^7 + x^5 + x^4 + x^3 + x^2 + x
m(x) = (x) * a(x) + (x^6 + x^5 + x^2 + x + 1)
Calculation of 0xbe-1 in the finite field GF(28)01100111 = 00000001 * 100011011 + 00000010 * 10111110
00010111 = 00000011 * 100011011 + 00000111 * 10111110
00000010 = 00001000 * 100011011 + 00010111 * 10111110
00000001 = 01011011 * 100011011 + 
10000110 * 10111110
00000000 = 10111110 * 100011011 + 100011011 * 10111110
a
-1(x) = x^7 + x^2 + x = 10000110 = 0x86
The calculation of 0xbe
-1 is made with the 
Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.
           1 0 0 0 1 1 1 1      0     1     0
           1 1 0 0 0 1 1 1      1     1     1
           1 1 1 0 0 0 1 1      1     0     1
           1 1 1 1 0 0 0 1      0     0     1
SBOX(be) = 1 1 1 1 1 0 0 0   *  0  +  0  =  0
           0 1 1 1 1 1 0 0      0     1     1
           0 0 1 1 1 1 1 0      0     1     0
           0 0 0 1 1 1 1 1      1     0     1
SBOX(be) = 10101110 = ae
For more information see 
FIPS 197.
Implemented by bachph [at] philba [dot] com