Calculation of 0xce
m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) =   0xce =  11001110 = x^7 + x^6 + x^3 + x^2 + x
m(x) = (x + 1) * a(x) + (x^6 + x^3 + 1)
Calculation of 0xce-1 in the finite field GF(28)01001001 = 00000001 * 100011011 + 00000011 * 11001110
00010101 = 00000011 * 100011011 + 00000100 * 11001110
00001000 = 00001110 * 100011011 + 00010111 * 11001110
00000101 = 00011111 * 100011011 + 00101010 * 11001110
00000010 = 00110000 * 100011011 + 01000011 * 11001110
00000001 = 01111111 * 100011011 + 
10101100 * 11001110
00000000 = 11001110 * 100011011 + 100011011 * 11001110
a
-1(x) = x^7 + x^5 + x^3 + x^2 = 10101100 = 0xac
The calculation of 0xce
-1 is made with the 
Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.
           1 0 0 0 1 1 1 1      0     1     1
           1 1 0 0 0 1 1 1      0     1     1
           1 1 1 0 0 0 1 1      1     0     0
           1 1 1 1 0 0 0 1      1     0     1
SBOX(ce) = 1 1 1 1 1 0 0 0   *  0  +  0  =  0
           0 1 1 1 1 1 0 0      1     1     0
           0 0 1 1 1 1 1 0      0     1     0
           0 0 0 1 1 1 1 1      1     0     1
SBOX(ce) = 10001011 = 8b
For more information see 
FIPS 197.
Implemented by bachph [at] philba [dot] com