Impressum und Datenschutzerklaerung

Calculation of 0xda

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0xda =  11011010 = x^7 + x^6 + x^4 + x^3 + x
m(x) = (x + 1) * a(x) + (x^6 + x^5 + x^4 + x^2 + 1)

Calculation of 0xda-1 in the finite field GF(28)

01110101 = 00000001 * 100011011 + 00000011 * 11011010
00110000 = 00000010 * 100011011 + 00000111 * 11011010
00010101 = 00000101 * 100011011 + 00001101 * 11011010
00001111 = 00001101 * 100011011 + 00010000 * 11011010
00000100 = 00010010 * 100011011 + 00111101 * 11011010
00000011 = 00111011 * 100011011 + 01010111 * 11011010
00000001 = 01011111 * 100011011 + 11000100 * 11011010
00000000 = 11011010 * 100011011 + 100011011 * 11011010

a-1(x) = x^7 + x^6 + x^2 = 11000100 = 0xc4

The calculation of 0xda-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     1
1 1 0 0 0 1 1 1 0 1 1
1 1 1 0 0 0 1 1 1 0 1
1 1 1 1 0 0 0 1 0 0 0
SBOX(da) = 1 1 1 1 1 0 0 0 * 0 + 0 = 1
0 1 1 1 1 1 0 0 0 1 0
0 0 1 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0


SBOX(da) = 01010111 = 57

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com