Calculation of 0xe4
m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0xe4 = 11100100 = x^7 + x^6 + x^5 + x^2
m(x) = (x + 1) * a(x) + (x^5 + x^4 + x^2 + x + 1)
Calculation of 0xe4-1 in the finite field GF(28)00110111 = 00000001 * 100011011 + 00000011 * 11100100
00001111 = 00000101 * 100011011 + 00001110 * 11100100
00000100 = 00010000 * 100011011 + 00110101 * 11100100
00000011 = 00110101 * 100011011 + 01010001 * 11100100
00000001 = 01001111 * 100011011 +
11000110 * 11100100
00000000 = 11100100 * 100011011 + 100011011 * 11100100
a
-1(x) = x^7 + x^6 + x^2 + x = 11000110 = 0xc6
The calculation of 0xe4
-1 is made with the
Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.
Affine transformation over GF(2) 1 0 0 0 1 1 1 1 0 1 1
1 1 0 0 0 1 1 1 1 1 0
1 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1 0 0 1
SBOX(e4) = 1 1 1 1 1 0 0 0 * 0 + 0 = 0
0 1 1 1 1 1 0 0 0 1 1
0 0 1 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 1 0 0
SBOX(e4) = 01101001 = 69
For more information see
FIPS 197.
Implemented by bachph [at] philba [dot] com