Impressum und Datenschutzerklaerung

Calculation of 0xf7

m(x) = 0x11b = 100011011 = x^8 + x^4 + x^3 + x + 1
a(x) = 0xf7 =  11110111 = x^7 + x^6 + x^5 + x^4 + x^2 + x + 1
m(x) = (x + 1) * a(x) + (x)

Calculation of 0xf7-1 in the finite field GF(28)

00000010 = 00000001 * 100011011 + 00000011 * 11110111
00000001 = 01111011 * 100011011 + 10001100 * 11110111
00000000 = 11110111 * 100011011 + 100011011 * 11110111

a-1(x) = x^7 + x^3 + x^2 = 10001100 = 0x8c

The calculation of 0xf7-1 is made with the Extended Euclidean algorithm. Instead of normal division and multiplication you need to use Polynomialdivision and Polynomialmultiplication.


Affine transformation over GF(2)
           1 0 0 0 1 1 1 1      0     1     0
1 1 0 0 0 1 1 1 0 1 0
1 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1 1 0 1
SBOX(f7) = 1 1 1 1 1 0 0 0 * 0 + 0 = 0
0 1 1 1 1 1 0 0 0 1 1
0 0 1 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 1 1 0 0


SBOX(f7) = 01101000 = 68

For more information see FIPS 197.



Implemented by bachph [at] philba [dot] com